Examen National 2019 Session Normale

Mathématiques

Niveau : 2Bac-SM Durée: 4 heures

Coef: 9

③: www.elmaths.com

www.fb.com/elmaths1

2BAC-SM

Exercice 1 (3.5 points)

On rappelle que $(\mathbb{C}, +, \times)$ est un corps commutatif et que $(M_2(\mathbb{R}), +, \times)$ est un anneau unitaire de zéro la matrice nulle $O = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ et d'unité la matrice $I = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

Soit * la loi de composition interne définie sur $\mathbb C$ par :

$$(\forall (x,y) \in \mathbb{R}^2) (\forall (a,b) \in \mathbb{R}^2) : (x+yi) * (a+bi) = xa + (x^2b + a^2y) i$$

- (a) Montrer que la loi * est commutative sur \mathbb{C} . (0, 25pt)
 - (b) Montrer que la loi * est associative sur \mathbb{C} . (0,5pt)
 - (c) Montrer que la loi * admet élément neutre e que l'on déterminera. (0, 25pt)
 - (d) Soit $(x,y) \in \mathbb{R}^* \times \mathbb{R}$. Montrer que le nombre complexe x+yi admet le nombre complexe $\frac{1}{r} - \frac{y}{r^4}i$ comme symétrique pour la loi *. (0, 25pt)
- 2 On considère le sous-ensemble E de $\mathbb C$ définie par : $E = \{x + yi/x \in \mathbb R_+^*; y \in \mathbb R\}$
 - (a) Montrer que E est stable pour la loi * dans \mathbb{C} . (0, 25pt)
 - (b) Montrer que (E,*) est est un groupe commutatif. (0,5pt)
- 3 On considère le sous-ensemble G de E définie par : $G = \{1 + yi/y \in \mathbb{R}\}$. Montrer que G est un sous-groupe de (E,*). (0,5pt)
- 4 On considère l'ensemble $F = \left\{ M(x,y) = \begin{pmatrix} x & y \\ 0 & x \end{pmatrix} / x \in \mathbb{R}_+^*; y \in \mathbb{R} \right\}$
 - (a) Montrer que F est stable pour la loi \times dans $M_2(\mathbb{R})$. (0, 25pt)
 - (b) Soit φ l'application de E vers F qui à tout nombre complexe x+yi de E fait correspondre la matrice $M(x^2, y) = \begin{pmatrix} x^2 & y \\ 0 & x^2 \end{pmatrix}$ de F. Montrer φ est un isomorphisme de (E, *) vers (0,5pt)
 - (\mathbf{c}) En déduire que (F, \times) est un groupe commutatif. (0, 25pt)

Exercice 2 (3.5 points)

Soit m un nombre complexe non réel $(m \in \mathbb{C} - \mathbb{R})$.

I- On considère dans \mathbb{C} , l'équation d'inconnue z définie par :

$$(E): z^2 - (1+i)(1+m)z + 2im = 0$$

- (a) Montrer que le discriminant de l'équation (E) est non nul.
 - (b) Déterminer z_1 et z_2 , les solution de l'équation (E).
- 2 On suppose dans cette question que $m = e^{i\theta}$ avec $0 < \theta < \pi$.
 - (a) Déterminer le module et un argument de $z_1 + z_2$.
 - (b) Montrer que si $z_1 z_2 \in \mathbb{R}$ alors $z_1 + z_2 = 2i$.

II- Le plan complexe est rapporté a un repère orthonormé direct $(0; \overline{u}, \overline{v})$.

On considère les points suivants : A le point d'affixe a=1+i, B le point d'affixe b=(1+i)m, C le point d'affixe c=1-i, D l'image du point B par la rotation de centre O et d'angle $\frac{\pi}{2}$ et Ω le milieu du segment [CD].

- **1** a Montrer que l'affixe du point Ω est $\omega = \frac{(1-i)(1-m)}{2}$.
 - **(b)** Calculer $\frac{b-a}{\omega}$.
 - (c) En déduire que $(O\Omega) \perp (AB)$ et que $AB = 2O\Omega$.
- **2** La droite $(O\Omega)$ coupe la droite (AB) au point H d'affixe h.
 - (a) Montrer que $\frac{h-a}{b-a}$ est un réel et que $\frac{h}{b-a}$ est un imaginaire pur.
 - (\mathbf{b}) En déduire h en fonction de m.

Exercice 3 (3 points)

On admet que 2969 (l'année amazighe actuelle) est un nombre premier. Soit n et m deux entiers naturels vérifiant : $n^8 + m^8 \equiv 0$ [2969]

- 1 On suppose dans cette question que 2969 ne divise pas n.
 - (a) En utilisant le théorème de BEZOUT, montrer que : $(\exists u \in \mathbb{Z})$; $u \times n \equiv 1[2969]$. (0, 5pt)
 - **(b)** En déduire que : $(u \times m)^8 = -1[2969]$ et que : $(u \times m)^{2968} = -1[2969]$ (On remarque que : $2968 = 8 \times 371$). (0,5pt)
 - (c) Montrer que 2969 ne divise pas $u \times m$. (0, 5pt)
 - d En déduire qu'on a aussi $(u \times m)^{2868} \equiv 1[2969].$ (0,5pt)
- (2) (a) En utilisant les résultats précédents, montrer que 2969 divise n. (0,5pt)
 - **b** Montrer que : $n^8 + m^8 \equiv 0[2969] \Leftrightarrow n \equiv 0[2969]$ et $m \equiv 0[2969]$ (0, 5pt)

Exercice 4 (10 points)

PARTIE I : On considère la fonction f définie sur \mathbb{R} par : $f(x) = 4x \left(e^{-x} + \frac{1}{2}x - 1 \right)$ et on note (C) sa courbe représentative dans un repère orthonormé $(O; \overrightarrow{i}, \overrightarrow{j})$

- Calculer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$. (0,5pt)
- **a** Montrer que f est dérivable sur \mathbb{R} et que : $(\forall x \in \mathbb{R}) : f'(x) = 4(e^{-x} 1)(1 x).$ (0, 5pt)
 - **b** Étudier les variations de f sur R, puis donner son tableau de variations. (0,75pt)
 - © Montrer qu'il existe un unique réel α dans l'intervalle $\left[\frac{3}{2}, 2\right]$ tel que $f(\alpha) = 0$.

 (On prendra $e^{\frac{3}{2}} = 4, 5$)
 - (d) Vérifier que : $e^{-\alpha} = 1 \frac{\alpha}{2}$. (0, 25pt)
- (a) En appliquant le théorème de ROLLE d la fonction f', montrer qu'il existe un réel x_0 de l'intervalle]0,1[tel que $:f''(x_0)=0$ (0,5pt)

(\mathbf{b}) En appliquant le théorème des accroissements finis a la fonction f''	, montrer que, pour
tout réel x différent de x_0 de l'intervalle $[0,1]$, on a : $\frac{f''(x)}{x-x_0} > 0$	(0,5pt)

- **©** En déduire que $I(x_0, f(x_0))$ est un point d'inflexion de la courbe (C) (0, 25pt)
- (4) (a) Étudier les branches infinies de la courbe (C). (0,5pt)
 - Beprésenter graphiquement la courbe (C) dans le repère $(O; \overrightarrow{i}, \overrightarrow{j})$ (0, 5pt) (On prendra : $||i|| = ||\overrightarrow{j}|| = \text{lcm}, f(1) = -0.5$ et il n'est pas demandé de représenter le point I)
- (5) (a) Vérifier que : $(\forall x \in]-\infty,\alpha]$) ; $f(x) \leq 0$ (0,25pt)
 - **(b)** Montrer que : $\int_0^{\alpha} f(x)dx = \frac{2}{3}\alpha \left(\alpha^2 3\right), \text{ en déduire que : } \frac{3}{2} < \alpha \le \sqrt{3}$ (0,75pt)
 - Calculer en fonction de α , en cm², l'aire du domaine plan limité par la courbe (C) et les droites d'équations respectives : y=0, x=0 et $x=\alpha$. (0,5pt)

PARTIE II: On considère la suite numérique $(u_n)_{n\in\mathbb{N}}$ définie par :

$$u_0 < \alpha \text{ et } (\forall n \in \mathbb{N}) \quad ; \quad u_{n+1} = f(u_n) + u_n$$

1 a Montrer par récurrence que : $(\forall n \in \mathbb{N})$ $u_n < \alpha$ (0, 5pt)

(utiliser la question 5 -a) de la PARTIE I)

- **b** En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante (0,25pt)
- On suppose que $0 \le u_0$ et on pose $(\forall x \in \mathbb{R}); g(x) = e^{-x} + \frac{1}{2}x \frac{3}{4}$
 - (a) Montrer que : $(\forall x \in \mathbb{R})$; g(x) > 0 (On prendra : $\ln 2 = 0.69$) (0,5pt)
 - **b** En utilisant le résultat de la question précédente, montrer que : $(\forall n \in \mathbb{N})$; $0 \le u_n$ (0, 5pt) (On remarque que : f(x) + x = 4xg(x))
 - (c) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente. (0,25pt)
- 3 On suppose que $u_0 < 0$
 - (a) Montrer que : $(\forall n \in \mathbb{N})$; $u_{n+1} u_n \le f(u_0)$ (0, 5pt)
 - (b) Montrer que : $(\forall n \in \mathbb{N})$; $u_n \le u_0 + nf(u_0)$ (0,5pt)
 - $\begin{array}{c}
 \mathbf{c}
 \end{array}$ En déduire $\lim_{n \to +\infty} u_n$ (0, 25pt)

③: <u>www.elmaths.com</u> **f**: <u>www.fb.com/elmaths1</u> <u>2BAC-SM</u>

www.elmaths.com www.facebook.com/elmaths1