
الامتحان الموحد الاول للبكالوريا الدورة الثانية الموضوع

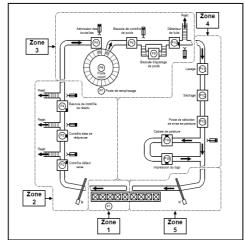
2017/03/21

3 المعامل:

علوم المهندس شعبة العلوم الرياضية - ب-ب(ة) - المسلك: مدة الإنجاز:

Constitution de l'épreuve

Volet 1: présentation de l'épreuve page 1


Volet 2: Présentation du support pages (2-3-4)

Volet 3: Substrat de sujet :

> Situation n°1 page 4 Situation n°2 page 4 Situation n°3 page 5 Situation n°4 page 5

Volet 4: pages (6-7-8) **Documents Ressources**

pages (9-10-11-12-13) Volet 5: Documents réponses DR

Présentation de l'épreuve

Système à étudier : Unité de remplissage des bouteilles de gaz;

Durée de l'épreuve : 2h; Coefficient: 3:

Moyens de calcul autorisés : seules les calculatrices scientifiques non

programmables sont autorisées;

Documents autorisés : Aucun

• Conseils aux candidats :

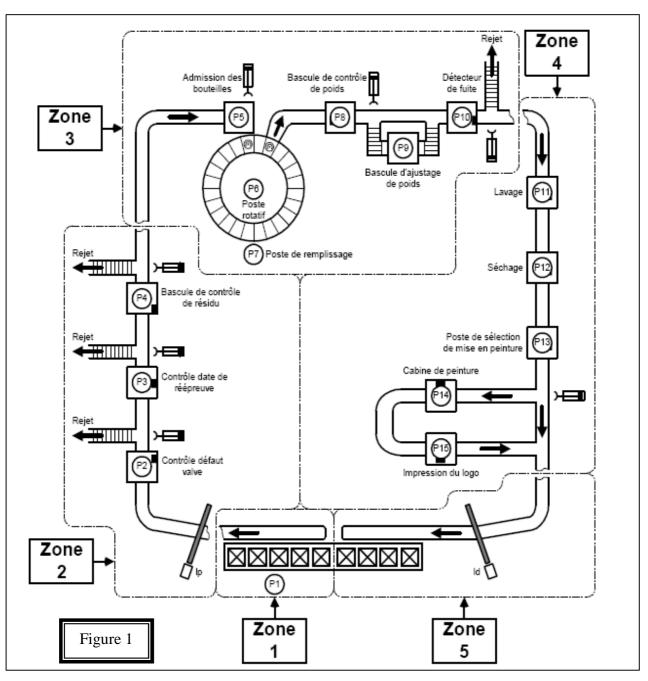
☞ Vérifier que vous disposez bien de tous les documents (1/13 à 19/13);

Faire une lecture attentive afin de vous imprégner du sujet ;

Rédiger les réponses aux questions posées sur les documents réponses DR prévus.

Présentation du support

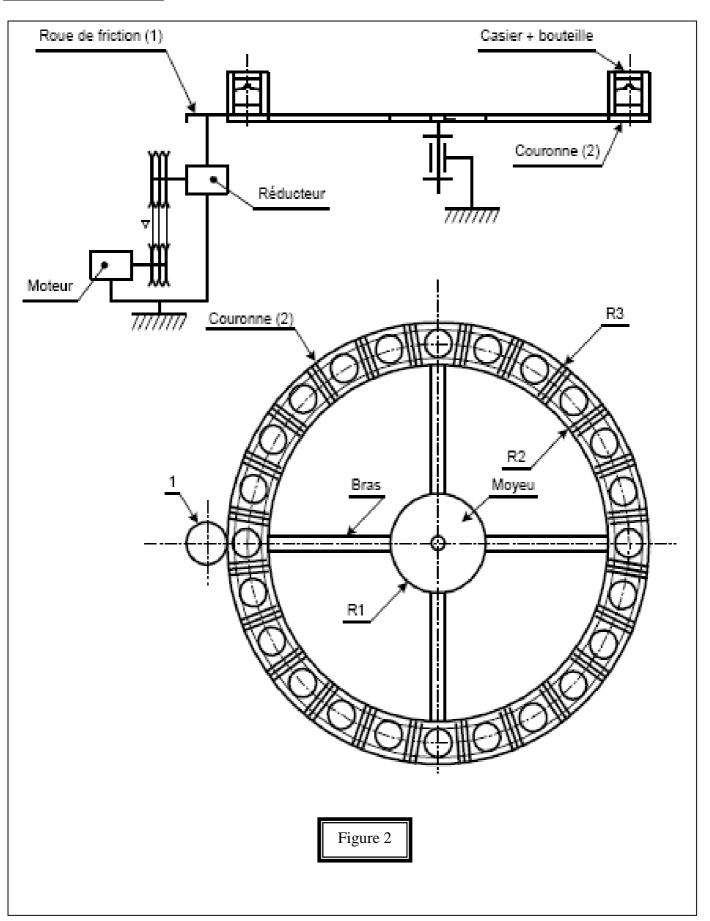
L'étude porte sur une unité de remplissage de bouteilles de gaz. Cette unité comporte différents types d'équipements regroupés en sous-ensembles appelés « poste » et reliés par des convoyeurs à chaînes. Ces postes, au nombre de 15 (voir figure 1) sont regroupés en 5 zones :


La zone 1 : a pour fonction d'alimenter en bouteilles vides le chariot convoyeur qui permet d'acheminer ces bouteilles d'un poste à un autre ;

La zone 2 : permet d'éjecter les bouteilles présentant des défauts. Seules les bouteilles conformes aux normes de sécurité passent dans la zone de remplissage ;

La zone 3 : assure les fonctions de remplissage des bouteilles et de contrôle du poids ainsi que la détection des fuites de gaz. Les bouteilles, sans défauts, ayant quitté la zone 3 sont amenées vers la zone 4 ;

La zone 4 : fait subir aux bouteilles un traitement esthétique : lavage, séchage, peinture et impression éventuelle du logo ;


La zone 5 : permet l'évacuation des bouteilles.

الصفحة 3/3 - موضوع الامتحان الموحد الاول - الدورة الثّانية 2017-مادة : علوم المهندس، الشعب(ة) أو المسلك : شعبة العلوم الرياضية ب

Présentation du poste rotatif (Poste P6)

Description du schéma :

- موضوع الامتحان الموحد الاول - الدورة الثانية 2017-مادة : علوم المهندس، الشعب (ق) أو المسلك : شعبة العلوم الرياضية -ب-

Le poste P6 est une table rotative comprenant deux disques reliés par 4 bras :

- ✓ Un disque de rayon extérieur R3 et de rayon intérieur R2 appelé couronne ;
- ✓ Un disque de rayon R1 appelé moyeu.

La couronne comprend 24 casiers à bouteilles pouvant recevoir chacun une bouteille de grande ou de petite capacité.

Les postes de chargement, de déchargement et de remplissage des bouteilles n'apparaissent pas sur la figure2.

Le mouvement de rotation est assuré par l'application d'une roue de friction (1) contre la surface latérale de la couronne (2).

La roue de friction (1) est fixée sur l'arbre de sortie d'un réducteur entraîné par un moteur triphasé (M).

<u>N.B</u>: Une roue de friction est une roue de surface lisse sans dentures ce qui fait que la transmission du mouvement entre cette dernière et la couronne se fait uniquement par adhérence entre les deux éléments.

Mécanisme de transmission de mouvement :

Le dessin d'ensemble de la page 06 (Voir document ressource 1) représente le moto-réducteur. Le moteur (M) est asynchrone triphasé tournant à la vitesse de 900 tr/mn. La transmission à la couronne (2) est assurée par :

- ✓ Deux poulies multi gorges (3–11) et courroie (16).
- ✓ Un réducteur de vitesses formé par deux couples d'engrenages cylindriques extérieures à dentures droites (4–6) et (7–5).
- ✓ Un renvoi d'angles formé par un couple conique (9–8)
- ✓ Une transmission par roues de friction (1–2)

Situation d'évaluation n°1 : Etude fonctionnelle.

Après avoir pris connaissance du système on vous demande de :

- 1-1- Compléter l'actigramme du niveau A-0 relatif à l'unité de remplissage de bouteilles de gaz sur le document réponse DR1 page 09 .
- 1-2- Compléter, sur le document répone **DR1** page 09, le diagramme FAST en se référant au dessin d'ensemble du document ressource 1 pages 06 et 07.

Situation d'évaluation n°2 : Etude de la liaison.

Sur les documents réponse DR2 et DR3 pages 10 et 11, on vous demande de compléter :

- **2-1-** La chaîne cinématique entre le moteur (M) et la couronne (2).
- **2-2-** Les différentes classes d'équivalence en se référant au dessin d'ensemble.
- **2-3-** Le graphe de liaison correspondant.
- **2-4-** Le schéma cinématique minimal du réducteur.

- موضوع الامتحان الموحد الاول - الدورة الثانية 2017-مادة : علوم المهندس، الشعب(ة) أو المسلك : شعبة العلوم الرياضية-ب-

Situation d'évaluation n°3 : Montage des roulements.

Sur l'arbre (07) on a fixé la roue dentée (06) qui est entrainée en rotation par l'intermédiaire du pignon (04) fixé sur l'arbre (04). De même cette arbre (07) fait entrainée lui aussi l'arbre (09) par l'intermédiaire de la roue dentée (05). (On donne le nom pignon à la roue dentée qui possède le diamètre le plus petit et le nom roue dentée à la roue qui possède le diamètre le plus grand).

Répondre sur les documents Repenses 04 et 05, pages :12 et 13

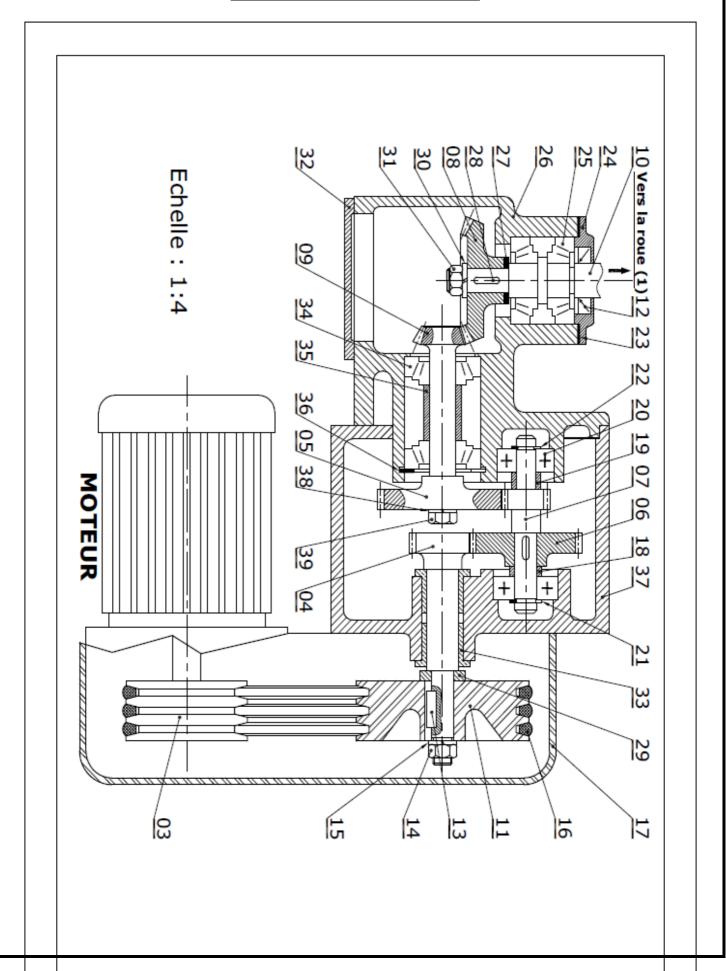
- **3-1-** Donner le nom des MIP et des MAP de la mise en liaison du pignon (08) sur l'arbre (10).
- 3-2- Qu'est-ce que nous avons utilisé pour faciliter le guidage en rotation de l'arbre (04).

L'arbre (07) est guidé en rotation par deux roulements (20).

- **3-3-** Donner le nom de ces deux roulements.
- **3-4-** Le montage est à arbre tournant ou alésage tournant ?
- **3-5-** Indiquer la nature des ajustements des bagues des roulements : avec jeu ou avec serrage.
- **3-6-** Indiquer sur le schéma, du document réponse, l'emplacement des arrêts en translation des bagues intérieurs et extérieurs par des petits rectangles pleins (▮) ?
- 3-7- Les noms de ces arrêts en translation des bagues intérieures et des bagues extérieures.
- **3-8-** La bague intérieure du roulement de droite (20) du dessin d'ensemble est liée indirectement en translation avec l'arbre (07). A gauche en (G) et à droite en (H). Etablir, sur le diagramme du document réponse (DR5), la suite des contacts entre la bague intérieure et l'arbre (07).

Situation d'évaluation n°4 : Etude du moteur électrique.

Le couple nécessaire pour entrainer en rotation la roue de friction est C=50mN avec une vitesse de rotation $N_M=900tr/min$.


Répondre sur les documents Repense 5, page :13

- **4-1-** Calculer la puissance utile minimale Pu mini du moteur.
- **4-2-** Choisir le moteur dans la documentation constructeur (Voir document ressource **2** page...). Préciser son rendement et son facteur de puissance (Réseau triphasé 400V).
- **4-3-** Calcul de la puissance absorbée Pa par le moteur.
- 4-4- Déterminer l'intensité absorbée par le moteur (avec données constructeur).
- **4-5-** Déterminer la vitesse de synchronisme Ns (en tr/mn) :
- **4-6-** Calculer, alors, le glissement **g** (en %):

الصفحة 6/6 - موضوع الامتحان الموحد الاول ـ الدورة الثانية 2017-مادة : علوم المهندس، الشعب(ة) أو المسلك : شعبة العلوم الرياضية-بـ

Document ressource 1

Dessin d'ensemble du moto réducteur ;

Document ressource 1 bis

Nomenclature:

24	1	Vis					
23	1	Couvercle					
22	2	Anneau élastique pour arbre					
21	1	Anneau élastique pour arbre					
20	2	Roulement rigide à une rangée de billes					
19	2	Entretoise					
18	1	Entretoise					
17	4	support					
16	4	Courroie trapézoidale					
15	4	Rondelle plate					
14	4	Ecrou	3	39	1	Ecrou	
13	1	Clavette parallèle, forme A	3	38	1	Rondelle	
12	1	Joint à lèvre	3	37	1	corps	
11	1	Poulie rceptrice	3	36	2	Anneau élastique pour alésage	
10	1	Arbre	3	35	1	Bague Entretoise	
9	1	Pignon arbré	3	34	2	Roulement à rouleau conique	
8	1	Roue dentée	3	33	4	coussinet	
7	1	Pignon arbré	3	32	1	carter	
6	1	Roue dentée	3	31	1	Ecrou	
5	1	Roue dentée	3	30	1	Rondelle	
4	2	Pignon arbré	2	29	1	Bague de guidage	
3	2	Poulie motrice	2	28	1	Clavette	
2	1	Couronne		27	1	Anneau élastique pour arbre	
1	1	Roue dentée		26	2	Carter	
			2	25	2	Roulement à rouleau conique	
R p	Nb	Désignation	R	₹р	Nb	Désignation	
	UNITE DE REMPLISSAGE DE BOUTEILLES DE GAZ						

Document ressource 2

Moteurs asynchrones triphasés fermés Carter alliage aluminium LS Caractéristiques éléctriques

E1 - Grilles de sélection : mono-vitesse

IP 55 - S1 CI. F - ∆T 80 K

1000 min					DÉ	SEALL	۸ 220	/ V 40	0 V 0	ı ∆ 40 0) V 50	Hz			
					KE.	SEAU	Δ 230	7 1 40	IE1	ı Δ 40 0) V 50	П			
	Puissance nominale	Vitesse nominale	Moment nominal	Intensité nominale		Facteur de puissanc	е		Rendement 60034-2-1;		Courant démarrage/ Courant nominal	Moment démarrage/ Moment nominal	Moment maximum/ Moment nominal	Moment d'inertie	Masse
	P_{N}	N_N	M_{N}	I _{N (400V)}		$Cos \phi$			η		I_0/I_N	M_{D}/M_{N}	M_N/M_N	J	IM B3
Туре	kW	min ⁻¹	N.m	Α	4/4	3/4	2/4	4/4	3/4	2/4				kg.m²	kg
LS 56 M	0,045	860	0,5	0,29	0,66	0,59	0,52	34	31,5	25,3	2	1,7	1,7	0,00025	4
LS 56 M	0,06	850	0,7	0,39	0,67	0,6	0,53	33,4	30,9	25	2	1,7	1,7	0,00025	4
LS 63 M	0,09	860	1,0	0,46	0,8	0,7	0,63	35	32	26	2,1	1,6	1,6	0,0006	5,5
LS 71 M	0,12	950	1,2	0,75	0,51	0,44	0,38	45,6	40,5	32	3	2,4	3,0	0,0007	6,5
LS 71 M	0,18	945	1,8	0,95	0,52	0,46	0,38	52,8	48,8	40,7	3,3	2,3	2,9	0,0011	7,6
LS 71 L	0,25	915	2,6	1,15	0,6	0,52	0,43	51,9	49,6	42,2	3,1	2,0	2,2	0,0013	7,9
LS 80 L	0,25	955	2,5	0,85	0,67	0,64	0,48	62,8	62,7	56	3,9	1,6	1,8	0,0024	8,4
LS 80 L	0,37	950	3,7	1,1	0,72	0,67	0,57	65,8	59,7	59	4,3	1,7	2,2	0,0032	9,7
LS 80 L	0,55	950	5,5	1,8	0,64	0,6	0,47	68	63	55	4,9	2,1	2,6	0,0042	11
LS 90 S	0,75	930	7,7	2,1	0,77	0,66	0,54	70,5	69,3	63,5	4,7	2,4	2,6	0,0039	13,5
LS 90 L**	1,1	915	11,5	3	0,76	0,67	0,55	70,7	70,0	66,2	4,5	2,4	2,5	0,0048	15,2
LS 100 L**	1,5	905	15,8	4,2	0,74	0,62	0,52	70,8	70,8	65,0	5,6	2,5	2,7	0,0058	20
LS 112 M**	2,2	905	23,2	5,8	0,76	0,66	0,53	73,2	73,3	68,1	6	2,8	2,7	0,0087	24,2
LS 132 M**	3	957	30,3	6,8	0,78	0,71	0,59	78,2	79,3	77,2	6	2,0	2,6	0,018	38,3
LS 132 M	4	961	39,7	9,3	0,75	0,66	0,56	81,4	82,3	80,9	5,9	2,5	2,9	0,034	53,3
LS 132 M**	5,5	960	54,7	13,3	0,71	0,65	0,52	81,8	82,7	80,8	5,5	2,5	2,8	0,039	59,4
LS 160 M	7,5	969	73,9	16,3	0,79	0,74	0,63	86,1	86,4	84,9	4,7	1,7	2,5	0,089	77
LS 160 L	11	968	109	23,4	0,78	0,71	0,64	86,77	87,2	85,9	4,6	1,8	2,6	0,105	85
LS 180 LR	15	968	148	31,9	0,78	0,71	0,61	87,7	88,0	87,0	5,4	1,8	2,6	0,139	110
LS 200 LT	18,5	970	182	37	0,81	0,76	0,65	88,8	89,2	88,3	6,4	2,4	2,8	0,236	160
LS 200 L	22	972	216	43,6	0,81	0,76	0,65	89,4	89,7	88,8	6	2,0	2,7	0,295	190
LS 225 MR	30	968	296	59,5	0,81	0,79	0,72	90,4	91,2	91,0	6	2,2	2,5	0,39	235
LS 250 ME	37	978	361	71,1	0,81	0,79	0,69	91,5	92,1	92,0	6,2	2,3	2,5	0,85	305
LS 280 SC	45	978	439	86,5	0,81	0,79	0,69	91,6	92,2	91,9	6,2	2,3	2,5	0,99	340
LS 280 MC	55	978	537	106	0,81	0,79	0,72	92	93,1	93,4	6	2,4	2,5	1,19	385
LS 315 SN	75	983	729	142	0,82	0,78	0,67	92,8	92,9	92,3	6,5	2,5	2,7	1,3	438
LS 315 MP	90	980	877	164	0,85	0,83	0,76	92,9	93,1	92,4	7,2	2,4	2,9	3,74	760
LS 315 MR	110	980	1072	200	0,85	0,83	0,76	93,3	93,6	93,0	7,2	2,4	2,9	4,36	850
LS 315 MR	132	986	1278	242	0.83	0,8	0.72	94,2	94.3	93.7	6,6	2.40	2,50	4,36	830

^{*} Cette norme remplace la CEI 60034-2; 1996.

^{**} Ces moteurs n'atteignent pas le niveau de rendement IE1.

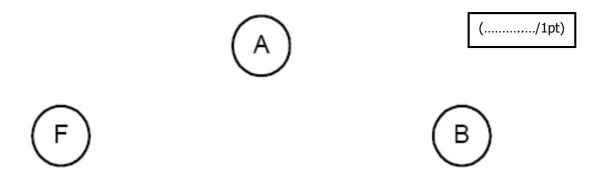
الصفحة 9/9	ول ـ الدورة الثانية 2017- ة) أو المسلك : شعبة العلوم الرياضية ـــ	- موضوع الامتحان الموحد الا ة : علوم المهندس، الشعب(ماد
Nom du condidat :			Note :/20
Document réponse DR	. :		
1-1-Compléte	(/1,5pts)		
	Unité de remplissage	de bouteilles de ga	az
1-2- Compléte	le diagramme FAST du mot	o-reducteur :	(/2,25pts)
	Transformer l'energie		
(/2,25pts)		Transmettre le mouvement de l'arbre moteur à l'arbre (4) Guider en rotation	
Transmettre le mouvement de rotation de l'arbre moteur à l'arbre (10)	Transmettre le mouvement de rotation à l'arbre (10)	Transmettre le mouvement de l'arbre (4) à l'arbre (7) Guider en rotation l'arbre (7) Transmettre le mouvement de l'arbre (7) à l'arbre (9) Guider en rotation l'arbre (9) Transmettre le mouvement de l'arbre (9)	

Guider en rotation l'arbre (10)

نحة	الصة
10	/10

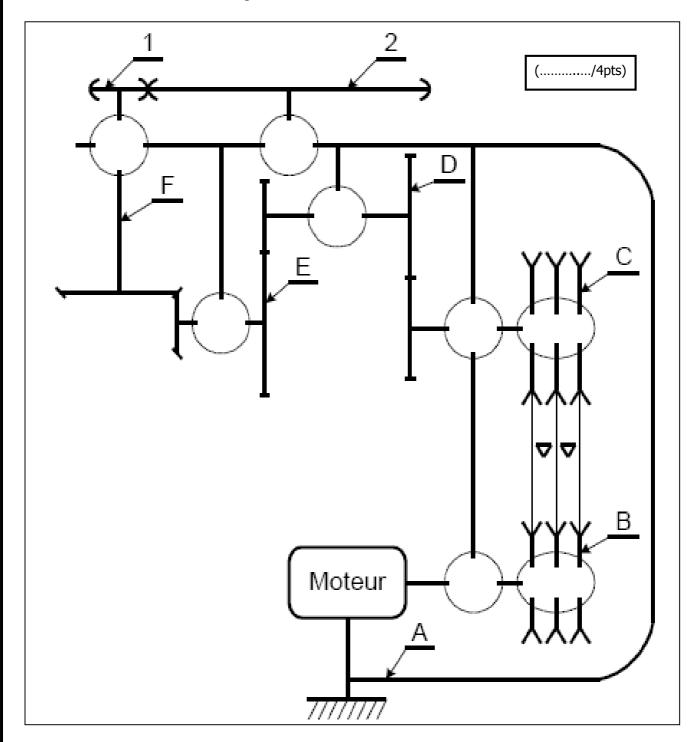
Document réponse DR2:

2-1- Chaine cinématique entre le moteur (M) et la couronne (2) :


(...../1pt)

2-2- Les différentes classes d'équivalence :

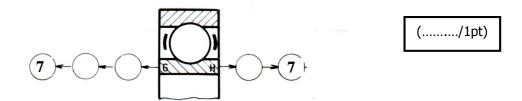
2-3- Le graphe de liaison correspondant :



- موضوع الامتحان الموحد الاول - الدورة الثانية 2017-مادة : علوم المهندس، الشعب(ة) أو المسلك : شعبة العلوم الرياضية بـ

Document réponse DR3:

2-4- Le schéma cinématique minimal du réducteur.


الصفحة 12/12 الصفحة	لامتحان الموحد الاول ـ الدورة الثانية 2017- مهندس، الشعـب(ة) أو المسلك : شعبة العلوم الريا	- موضوع ا/ مادة : علوم الد							
Document réponse DR4 :									
3-1- Le nom des MI	P et des MAP de la mise en liaison d								
(/1pt)									
Surface de mise en position Eléments de maintien en position									
Assemblage de pignon (8) et l'arbre (10)									
3-2- Le nom de la so	olution technologique pour faciliter le	e guidage en rotation de l'arbre (04) :							
		(/0,5pt)							
3-3- Le nom des de	ax roulements (20):								
		(/0,5pt)							
3-4- Le montage est	3-4- Le montage est à arbre tournant ou à alésage tournant ?								
	(/0,25pt)								
3-5- La nature des a	3-5- La nature des ajustements des bagues des roulements ? (/0,5pt)								
Bagues intérieures :									
2.6 Indianar our 1									
extérieurs par des petits rectan	_	en translation des bagues intérieurs et (/1pt)							
26	<u>//////</u> +	37							
									
	+	1+ 07							
1111		 07							
3-7- Les noms de ces arrêts en translation :									
Des bagues intérieures :									
Des bagues extérieurs :									
(/0,5pt)									
		(, 0,5рг)							

لة	ئد	سذ	الد
1	3	/1	3

- موضوع الامتحان الموحد الاول - الدورة الثانية 2017-مادة : علوم المهندس، الشعب (ة) أو المسلك : شعبة العلوم الرياضية ـب-

Document	réponse	DR5	:

3-8- Diagramme de la suite des contacts entre la bague intérieure du roulement (20) et l'arbre (07) :

4-1- Calculer la puissance utile minimale Pu _{mini} du moteur :	
	(/0,5pt)
4-2- Choisir le moteur dans la documentation constructeur. Préciser son rendement et su puissance (Réseau triphasé 400V) :	on facteur de
Type:	
Rendement :	. (/0,5pt)
4-3- Calcul de la puissance absorbée Pa par le moteur :	
	(/0,5pt)
A A Discouring Pinton it is also also and be understood and be understood as	
4-4- Déterminer l'intensité absorbée par le moteur (avec données constructeur) :	(/0,5pt)
4-5- Déterminer la vitesse de synchronisme Ns (en tr/mn) :	(/0,5pt)
4-6- Calculer, alors, le glissement g (en %):	
	(/0,5pt)